423 research outputs found

    Excitation of the odd-parity quasi-normal modes of compact objects

    Get PDF
    The gravitational radiation generated by a particle in a close unbounded orbit around a neutron star is computed as a means to study the importance of the ww modes of the neutron star. For simplicity, attention is restricted to odd parity (``axial'') modes which do not couple to the neutron star's fluid modes. We find that for realistic neutron star models, particles in unbounded orbits only weakly excite the ww modes; we conjecture that this is also the case for astrophysically interesting sources of neutron star perturbations. We also find that for cases in which there is significant excitation of quadrupole ww modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.

    Microscopic Black Hole Production in TeV-Scale Gravity

    Full text link
    Models with extra spatial dimensions and TeV-scale gravity offer the first opportunity to test the conjecture of black hole formation in trans-Planckian energy scattering with small impact parameters. After a brief review of gravitational scattering at ultrahigh energies and scenarios of TeV-scale gravity, search strategies at the LHC, at the Pierre Auger (cosmic ray) Observatory and at the neutrino telescopes AMANDA/IceCube are illustrated with the simplest but nevertheless representative example: production of Schwarzschild black holes and their observation via Hawking radiation in the large extra dimension scenario. Some more general features of the production of higher-dimensional black holes and/or uncertainties in the estimates are also outlined.Comment: 18 pages, 5 figures; Talk presented at XXX ITEP Winter School of Physics, Moscow, Russia, February 2002, references adde

    The orientation of elliptical galaxies

    Full text link
    We determine the orientations of the light distribution of individual elliptical galaxies by combining the profiles of photometric data from the literature with triaxial models. The orientation is given by a Bayesian probability distribution. The likelihood of obtaining the data from a model is a function of the parameters describing the intrinsic shape and the orientation. Integrating the likelihood over the shape parameters, we obtain the estimates of the orientation. We find that the position angle difference between the two suitably chosen points from the profiles of the photometric data plays a key role in constraining the orientation of the galaxy. We apply the methodology to a sample of ten galaxies. The alignment of the intrinsic principle axes of the NGC 3379, 4486 and NGC 5638 are studied.Comment: accepted in Astrophysics and Space Scienc

    Stochastic background of gravitational waves

    Get PDF
    A continuous stochastic background of gravitational waves (GWs) for burst sources is produced if the mean time interval between the occurrence of bursts is smaller than the average time duration of a single burst at the emission, i.e., the so called duty cycle must be greater than one. To evaluate the background of GWs produced by an ensemble of sources, during their formation, for example, one needs to know the average energy flux emitted during the formation of a single object and the formation rate of such objects as well. In many cases the energy flux emitted during an event of production of GWs is not known in detail, only characteristic values for the dimensionless amplitude and frequencies are known. Here we present a shortcut to calculate stochastic backgrounds of GWs produced from cosmological sources. For this approach it is not necessary to know in detail the energy flux emitted at each frequency. Knowing the characteristic values for the ``lumped'' dimensionless amplitude and frequency we show that it is possible to calculate the stochastic background of GWs produced by an ensemble of sources.Comment: 6 pages, 4 eps figures, (Revtex) Latex. Physical Review D (in press

    Scattering of particles by neutron stars: Time-evolutions for axial perturbations

    Get PDF
    The excitation of the axial quasi-normal modes of a relativistic star by scattered particles is studied by evolving the time dependent perturbation equations. This work is the first step towards the understanding of more complicated perturbative processes, like the capture or the scattering of particles by rotating stars. In addition, it may serve as a test for the results of the full nonlinear evolution of binary systems.Comment: 7 pages, 5 figures, Phys. Rev. D in pres

    An elliptical tiling method to generate a 2-dimensional set of templates for gravitational wave search

    Get PDF
    Searching for a signal depending on unknown parameters in a noisy background with matched filtering techniques always requires an analysis of the data with several templates in parallel in order to ensure a proper match between the filter and the real waveform. The key feature of such an implementation is the design of the filter bank which must be small to limit the computational cost while keeping the detection efficiency as high as possible. This paper presents a geometrical method which allows one to cover the corresponding physical parameter space by a set of ellipses, each of them being associated to a given template. After the description of the main characteristics of the algorithm, the method is applied in the field of gravitational wave (GW) data analysis, for the search of damped sine signals. Such waveforms are expected to be produced during the de-excitation phase of black holes -- the so-called 'ringdown' signals -- and are also encountered in some numerically computed supernova signals.Comment: Accepted in PR

    Quasinormal behavior of the D-dimensional Schwarzshild black hole and higher order WKB approach

    Full text link
    We study characteristic (quasinormal) modes of a DD-dimensional Schwarzshild black hole. It proves out that the real parts of the complex quasinormal modes, representing the real oscillation frequencies, are proportional to the product of the number of dimensions and inverse horizon radius Dr01\sim D r_{0}^{-1}. The asymptotic formula for large multipole number ll and arbitrary DD is derived. In addition the WKB formula for computing QN modes, developed to the 3rd order beyond the eikonal approximation, is extended to the 6th order here. This gives us an accurate and economic way to compute quasinormal frequencies.Comment: 15 pages, 6 figures, the 6th order WKB formula for computing QNMs in Mathematica is available from https://goo.gl/nykYG

    Computing gravitational waves from slightly nonspherical stellar collapse to black hole: Odd-parity perturbation

    Full text link
    Nonspherical stellar collapse to a black hole is one of the most promising gravitational wave sources for gravitational wave detectors. We numerically study gravitational waves from a slightly nonspherical stellar collapse to a black hole in linearized Einstein theory. We adopt a spherically collapsing star as the zeroth-order solution and gravitational waves are computed using perturbation theory on the spherical background. In this paper we focus on the perturbation of odd-parity modes. Using the polytropic equations of state with polytropic indices np=1n_p=1 and 3, we qualitatively study gravitational waves emitted during the collapse of neutron stars and supermassive stars to black holes from a marginally stable equilibrium configuration. Since the matter perturbation profiles can be chosen arbitrarily, we provide a few types for them. For np=1n_p=1, the gravitational waveforms are mainly characterized by a black hole quasinormal mode ringing, irrespective of perturbation profiles given initially. However, for np=3n_p=3, the waveforms depend strongly on the initial perturbation profiles. In other words, the gravitational waveforms strongly depend on the stellar configuration and, in turn, on the ad hoc choice of the functional form of the perturbation in the case of supermassive stars.Comment: 31 pages, accepted for publication in Phys. Rev. D, typos and minor errors correcte

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR
    corecore